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Flame quenching through endothermic reaction
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Abstract. A laminar premixed flame model is considered in which there is a second-order branching reaction
coupled with an endothermic decay of a chemical inhibitor. An analysis, based on high activation energies for the
reactions, is performed and two distinct cases are found. These depend on dimensionless parameters representing
the loss of heat relative to its production, α, and the consumption of inhibitor relative to that of fuel, β. With
α ∼ β � 1, extinction is achieved through a saddle-node bifurcation at a critical value of α. For α � β, no
extinction is found though considerable reductions in wave speed over the adiabatic limit are seen. The asymptotic
results are compared with numerical simulations of an initial-value problem for the model.
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1. Introduction

Premixed flames have been extensively studied as they are central to many technological
processes; extensive reviews are provided by Buckmaster and Ludford [1], Williams [2] and
Zeldovich et al. [3]. An important feature in any consideration of premixed flames is propaga-
tion inhibition (or flame quenching). The original discussions on this aspect were concerned
with situations where the removal of the heat created in the combustion reaction was through
purely temperature-dependent cooling (usually modelled by Newtonian cooling — a linear
temperature dependence). In these cases flame quenching is abrupt, occurring at a saddle-
node bifurcation at some critical value of the appropriate heat loss parameter. This was clearly
demonstrated through the use of high activation energy asymptotics in the definitive paper
by Buckmaster [4]. More recently these ideas have been extended to two-dimensional bifur-
cations [5] and to a two-step branching-recombination reaction with a volumetric heat loss
[6].

An alternative route by which the heat generated in the exothermic combustion reaction
can be dissipated is by some additional endothermic reaction. To examine this process in
more detail we consider a prototype model. In our model we assume that there are two active
chemical species, a fuel A, which undergoes a second-order exothermic reaction

A+ A → B rate: RA = k1a
2e−E1/RT , Q1 > 0 (1)

and a chemical inhibitorW , which decays to an inert product through the endothermic reaction

W → P rate: RW = k2we−E2/RT , Q2 < 0. (2)

Here a and w are the concentrations of reactants A and W , T is (absolute) temperature, k1, k2

are the pre-exponential factors and E1, E2 are the activation energies in reactions (1) and (2),
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respectively, R is the universal gas constant. A motivation for our model is provided by our
previous discussion of the effects of endothermic reactions coupled with radical scavenging
on branched-chain flame reactions [7]. Chemical reactions (1) and (2) played an important
role in this study, the second-order step (1) arose in [7] from an initiation and branched-chain
reaction being in quasi-steady state.

The significant feature that arises in our analysis is that both front and pulse waves in the
temperature are possible (fronts show a rise in temperature through the wave from the initial
‘cold’ state; in a pulse the temperature returns to its original state). When there is purely
temperature-dependent cooling, only pulse waves are possible. Which type of waveform arises
in our model depends effectively on the relative values of two (dimensionless) parameters α
and β that we indentify below. α measures the heat loss through the endothermic reaction
(2) against its generation via step (1), β gives the rate of consumption of the inhibitor W
relative to that of the fuel A. These two parameters are also the important ones in determining
whether there is wave inhibition or not. Flame quenching, when it occurs, is through the usual
saddle-node bifurcation and, even when it does not occur, there are considerable reductions in
propagation speed as the effects of the cooling become more pronounced.

We start by deriving the equations governing our model. These are made dimensionless,
following the previous paper by Buckmaster [4], so as to make them suitable for high activa-
tion asymptotics, which is the main part of our paper. These asymptotic results are augmented
by numerical simulations of the model.

2. Model

To derive the heat and mass balance equations for our model we assume a thermal/diffusive
model. This model is valid in the limit of weak thermal expansion, when there is no coupling
of the temperature and reactant concentrations with the underlying flow field. This approach
has been used extensively in the past, see the recent work of Weber et al. [8] and Mercer et al.
[9]. This leads to the equations for our model as

ρCp
∂T

∂t
= κ

∂2T

∂x2
+Q1k1a

2e−E1/RT −Q2k2we−E2/RT ,

∂a

∂t
= DA

∂2a

∂x2
− k1a

2e−E1/RT ,

∂w

∂t
= DW

∂2w

∂x2
− k2we−E2/RT

(3)

whereDA,DW are the diffusion coefficients for speciesA andW , κ is the thermal conductivity
(all assumed constant) and Cp is the specific heat at constant pressure.

Initially the fuel and inhibitor are uniformly distributed with concentrations a0 and w0,
respectively. For simplicity, we make the further assumption that initially T = 0 everywhere
except in some (small) region centred on x = 0. In this region there is a temperature input to
initiate the reaction and allow the possible formation of travelling combustion waves.

To make Equations (3) dimensionless we adopt the scalings suggested by Buckmaster [4],
as this leads to a system that is readily amenable to the high-activation-energy asymptotics
that we wish to consider. We put
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T =
(
Q1a0

ρCp

)
u, v = (a0 − a)

a0
, w = (w0 − w)

w0
,

t = (
k1a0e−γ ) t, x =

(
ρCpk1a0e−γ

κ

)1/2

x,

(4)

where γ , the dimensionless activation energy parameter, is given by

γ = ρCpE1

RQ1a0
. (5)

Substitution of (4, 5) in Equations (3) leads to the dimensionless equations for our model as
(on dropping the bars for convenience)

∂u

∂t
= ∂2u

∂x2
+ (1 − v)2exp

(
γ (u− 1)

u

)
− α(1 − w)exp

(
µγ (u− 1)

u

)
, (6)

∂v

∂t
= 1

LA

∂2v

∂x2
+ (1 − v)2exp

(
γ (u− 1)

u

)
, (7)

∂w

∂t
= 1

LW

∂2w

∂x2
+ β(1 − w)exp

(
µγ (u− 1)

u

)
, (8)

where

µ = E2

E1
, α = Q2k2w0eγ (1−µ)

Q1k1a
2
0

, β = k2eγ (1−µ)

k1a0

are dimensionless reaction parameters and

LA = κ

DAρCp
, LW = κ

DWρCp

are the Lewis numbers associated with the fuel and inhibitor, respectively. Note that

α

β
= Q2w0

Q1a0
.

The initial conditions are that

u = u0g(x), v = w = 0 at t = 0 (−∞ < x < ∞), (9)

where g(x) is a smooth function with compact support. For the numerical simulations de-
scribed below we apply zero-flux boundary conditions at infinity and, for simplicity, assume
symmetry about x = 0, taking

∂u

∂x
= ∂v

∂x
= ∂w

∂x
= 0 at x = 0 and as x → ∞ (t > 0). (10)

2.1. TRAVELLING-WAVE EQUATIONS

Our main purpose is to investigate the possible initiation (and properties) of any steady prop-
agating combustion waves that our model (6–10) can support. The equations governing such
waves are obtained by introducing the travelling co-ordinate
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y = x − ct,

where c is the (constant) wave speed, which we can take as positive, and then looking for
solutions in terms of the single co-ordinate y. This leads to the travelling-wave equations

u′′ + cu′ + (1 − v)2e

γ (u− 1)

u − α(1 − w)e

µγ (u− 1)

u = 0, (11)

1

LA
v′′ + cv′ + (1 − v)2e

γ (u− 1)

u = 0, (12)

1

LW
w′′ + cw′ + β(1 − w)e

µγ (u− 1)

u = 0, (13)

subject to

u → 0, v → 0, w → 0 as y → ∞, (14)

(primes denote differentiation with respect to y).
At the rear of the wave, conditions have to be uniform with the reaction completed. Equa-

tions (11–13) give the two possibilities:

u → 0, and v → vs, w → ws as y → −∞. (15)

We shall refer to this case a pulse wave (in the temperature) or

v → 1, w → 1, u → us as y → −∞. (16)

This is a front wave (all the fuel and inhibitor used up in the reaction). Here us , vs and ws are
positive constants (to be determined).

If we combine Equations (11–13) to eliminate the reaction terms, integrate once and apply
boundary conditions (14) as y → ∞, we obtain

u′ + cu−
(

1

LA
v′ + cv

)
+ α

β

(
1

LW
w′ + cw

)
= 0. (17)

Hence for

Front waves: us = 1 − α

β
Pulse waves: βvs = αws

(18)

From (18) a necessary condition for the existence of a front wave is that α < β or Q1a0 >

Q2w0.

3. High-activation-energy asymptotics, γ 	 1

Here we develop a solution of the travelling-wave equations (11–13) valid for γ large. We
adopt the approach developed by Buckmaster [4] for systems where the heat loss is through
purely temperature-dependent (Newtonian) cooling. Here the heat loss is through the en-
dothermic decay of the inhibitor. Our asymptotic approach requires that the parameters α,
β and the wave speed c are all small. In particular, we require that
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c = c γ −3/2 (19)

for a consistent matching in our asymptotic analysis, where c is O(1) for γ large. We assume
that LA, LW are of O(1).

We consider two separate cases, α ∼ β and α � β. In the first case we require α ∼ β ∼
γ −4 and that µγ is of O(1) to develop the appropriate asymptotic solution. We start with this
case.

3.1. α ∼ β ∼ γ −4

Here we put

α = α γ −4, β = β γ −4, ν = µγ, (20)

where α, β and ν are of O(1) as γ → ∞. We start the solution in the region ahead of the
reaction (Region I, the preheat zone). In this region we leave u and v unscaled and put

y = yγ −3/2, w = wγ −1. (21)

Expressions (19–21) are substituted in Equations (11–13) and a solution of the resulting
equations is sought by expanding

u = u0 + γ −1u1 + · · · , v = v0 + γ −1v1 + · · · , w = w0 + γ −1w1 + · · ·
c = c0 + γ −1c1 + · · · ,

We find, consistent with matching with the reaction zone, that

u0 = e−c0y,

u1 = (T1 − c1y)e
−c0y + α

νc0

∫ ∞

y

e−c0sexp[ν(1 − ec0s)]ds,
v0 = e−LAc0y,

v1 = −LAc1ye−LAc0y,

w0 = β

c0

[∫ ∞

y

exp
(
ν(1 − ec0s)

)
ds − e−LWc0y

∫ ∞

y

eLWc0sexp
(
ν(1 − ec0s)

)
ds

]
+ B0e−LWc0y

(22)

(T1 and B0 are constants to be determined). To complete the matching with the reaction zone,
we need the form of the solution in Region I for y small.

u ∼ 1 − c0y + c2
0y

2

2
+ · · · + γ −1

(
(T1 + αIν

νc2
0

)− (c0T1 + c1 + α

νc0
)y + · · ·

)
+ · · · ,

v ∼ 1 − LAc0y + L2
Ac

2
0y

2

2
+ · · · + γ −1 (−LAc1y + · · · )+ · · · ,

w ∼ γ −1

(
β

c2
0

(Jν −Kν)+ B0 +
(
β

c2
0

Kν − B0

)
LWc0y + · · ·

)
,

(23)

where Iν , Jν and Kν are the integrals
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Iν = c0

∫ ∞

0
e−c0yexp[ν(1 − ec0y)]dy =

∫ ∞

0

e−νs

(1 + s)2
ds = 1 − νeνei(ν),

Jν = c0

∫ ∞

0
exp[ν(1 − ec0y)]dy = eνei(ν) = Iν − I ′

ν,

Kν = c0

∫ ∞

0
eLWc0yexp[ν(1 − ec0y]dy = ν−LW eν

∫ ∞

ν

sLW−1e−sds,

where ei(ν) is the exponential integral [10, p.470]. Note that Iν → 1 as ν → 0, is monotone
decreasing in ν, with Iν ∼ ν−1 as ν → ∞.

We next consider the reaction zone (Region II), in which we put

u = 1 − U

γ
, v = 1 − V

γ
, w = W

γ
, ζ = γ −1/2y = yγ. (24)

Substituting (24) in Equations (11–13) gives

U ′′ − V 2exp

(
− U

(1 − γ −1U)

)
+ γ −1cU ′ + γ −2α(1 − W

γ
)exp

(
− νU

γ (1 − γ −1U)

)
= 0,

(25)

1

LA
V ′′ − V 2exp

(
− U

(1 − γ −1U)

)
+ γ −1cV ′ = 0, (26)

1

LW
W ′′ + γ −1cW ′ + γ −2β(1 − W

γ
)exp

(
− νU

γ (1 − γ −1U)

)
= 0, (27)

where primes denote differentiation with respect to ζ .
We look for a solution of Equations (25–27) by expanding

U = U0 + γ −1U1 + · · · , V = V0 + γ −1V1 + · · · , W = W0 + γ −1W1 + · · · .
At leading order we obtain

U ′′
0 − V 2

0 e−U0 = 0,
1

LA
V ′′

0 − V 2
0 e−U0 = 0, W ′′

0 = 0, (28)

subject to the matching condition, obtained by expressing (23) in terms of ζ and using (24),

U0 ∼ c0ζ −
(
T1 + αIν

νc2
0

)
, V0 ∼ LAc0ζ, W0 → β

c2
0

(Jν −Kν)+ B0 as ζ → ∞. (29)

Eliminating the reaction terms in Equations (28), integrating and applying the matching con-
ditions (29) as ζ → ∞, we have

U0 = 1

LA
V0 −

(
T1 + αIν

νc2
0

)
, W0 = β

c2
0

(Jν −Kν)+ B0. (30)

Substituting the first of these expressions in Equation (28a), integrating and satisfying the
condition that U ′

0 → c0 as U0 → ∞ (as ζ → ∞) we obtain
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U ′2
0 = c2

0 − 2L2
Ae−U0

((
U0 + T1 + αIν

νc2
0

)2

+ 2

(
U0 + T1 + αIν

νc2
0

)
+ 2

)
. (31)

At the rear of the reaction zone (Region II) V0 → 0 and hence

U0 → −
(
T1 + αIν

νc2
0

)
as ζ → −∞.

Then, from (31),

c2
0 = 4L2

Aexp

(
T1 + αIν

νc2
0

)
. (32)

At O(γ −1) we obtain the equations

U ′′
1 + c0U

′
0 − e−U0

(
2V1V0 − V 2

0 (U1 + U 2
0 )
) = 0,

1

LA
V ′′

1 + c0V
′

0 − e−U0
(
2V1V0 − V 2

0 (U1 + U 2
0 )
) = 0,

1

LW
W ′′

1 + c0W
′
0 = 0,

(33)

subject to the matching conditions, from (23), that

U1 ∼ −c
2
0ζ

2

2
+
(
c0T1 + c1 + α

νc0

)
ζ + T2 + · · · ,

V1 ∼ −L
2
Ac

2
0ζ

2

2
+ LAc1ζ + · · · ,

W1 ∼
(
β

c2
0

Kν − B0

)
LWc0ζ + B1 · · · ,

(34)

as ζ → ∞. Eliminating the reaction terms from Equations (33a,b), integrating and applying
the matching conditions (29, 34), we find

U ′
1 + c0U0 −

(
1

LA
V ′

1 + c0V0

)
= α

νc0
(1 − Iν), W1 =

(
β

c2
0

Kν − B0

)
LWc0ζ + B1. (35)

We now consider the region at the rear of the wave (Region III). In this region all the fuel
has been used up, i.e. v ≡ 1. We find that this region consists of two subregions, Regions IIIa
and IIIb. In Region IIIa we put

Y = γ −3/2 y, w = γ −1 w̃ (36)

and leave u unscaled. This results in the equations

u′′ + cu′ − α

γ

(
1 − w̃

γ

)
exp

(
ν(u− 1)

u

)
= 0,

1

LW
w̃′′ + cw̃′ + β

(
1 − w̃

γ

)
exp

(
ν(u− 1)

u

)
= 0,

(37)
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where primes now denote differentiation with respect to Y .
We look for a solution of Equations (37) by expanding

u = u0 + γ −1u1 + · · · , w̃ = w̃0 + γ −1w̃1 + · · · .
We find, on matching with the reaction zone (Region II)

u0 = 1, u1 = α

c0
Y + T1 + αIν

νc2
0

, w̃0 = −βY
c0

+
[
β

c2
0

(Jν −Kν)+ B0

]
. (38)

Matching with Regions I and II then gives

B0 = β

LWc
2
0

(1 +KνLW)

To complete the solution we require Region IIIb, where we put

ξ = γ −5/2 y = Y

γ
(39)

and leave u and w unscaled. The leading order equations are

c0
du

dξ
− α(1 − w)exp(

ν(u− 1)

u
) = 0,

c0
dw

dξ
+ β(1 − w)exp(

ν(u− 1)

u
) = 0,

(40)

subject to, from (38),

u ∼ 1 + α

c0
ξ + · · · , w ∼ − β

c0
ξ + · · · as ξ → 0−. (41)

Adding equations (40), integrating and satisfying (41) we have

β u+ α w = β (42)

and then

c0
du

dξ
= (

(α − β)+ βu
)

exp

(
ν(u− 1)

u

)
, in − ∞ < ξ < 0, u(0) = 1. (43)

There are two cases to consider. If α < β, Equation (43) has a steady state at u = 1 − α/β

and this steady state is approached (from the given initial condition) as ξ → −∞. This gives
the front wave. Note that w → 1 as ξ → −∞ in this case, all the inhibitor is used up in the
reaction. If α > β, then the term on the right-hand side of Equation (42) is positive for all
1 > u > 0 and here u → 0 as ξ → −∞. This is a pulse wave, with w → β/α, consistent
with (18) with vs = 1.

We now return to the reaction zone (Region II). From (38)

U1 ∼ − α

c0
ζ + · · · , V1 → 0 as ζ → −∞. (44)

Applying (44) in (35a) we obtain
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Figure 1. The solution to Equation (46) for c0 in terms of α. αcrit is given by (47).

T1 = − α

c2
0

(
ν + 1

ν

)
(45)

and hence, from (32),

c2
0 = 4L2

Aexp

(
− α

νc2
0

(ν + 1 − Iν)

)
. (46)

Equation (46) can be regarded as an equation for c0 in terms of α. This equation has two
solutions for c0 for 0 < α < αcrit where

αcrit = 4L2
Ae

−1 ν

ν + 1 − Iν
, αcrit ∼ 4L2

Ae
−1 ν

ν + 1 − Iν
γ −4 + · · · as γ → ∞ (47)

with a corresponding c0,crit = 2LAe−1/2. There are no solutions for α > αcrit. A typical
situation is illustrated in Figure 1. Note that expression (47) is independent of β. In the present
case (α ∼ β ∼ γ −4) there is extinction at a finite value of α (as given by (47)). There is the
possibility of the transition from front waves (which always arise at α = 0) to pulse waves
provided β < αcrit. Thus extinction, through the saddle-node bifurcation, can occur from both
front and pulse solutions in this limit.

3.2. α � β

We can modify the above analysis to the case when β is ofO(γ −3), still with α ofO(γ −4) and
µγ of O(1). The main difference with the previous case is that w is now O(1) in Regions I
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Figure 2. Wave speed c against α, obtained from the numerical integrations of initial-value problem (6–10), for
γ = 10·0, β = 10−4 and µ = 0·1, 0·5, (LA = LW = 1).

and II and that w ≡ 1 in Region III. In this case we get only front waves (as expected) and
there is no wave extinction at a finite value of α, finding that

c2
0 = 4L2

Aexp
(
−α/β̃

)
, (48)

where β̃ = βγ 3 is O(1).

We can extend the range of our analysis, still keeping the basic structure given above, to
the case when α and β are O(γ −2) and O(γ −1), respectively, with µ now of O(1). We write

α = α̂γ −2, β = β̂γ −1,

where α̂, β̂ are O(1) as γ → ∞. We still keep (19) as the scaling for the wave speed c and
the scaling for y given in (21) for Region I, though now we take w to be O(1) in this region.
Allowing µ to be of O(1) means that both reaction terms can be neglected in Region I. The
terms u0, v0, v1 in the expansion in γ −1 are the same as in (20), with now u1 and w0 taking
the simpler forms, consistent with matching with the reaction zone,

u1 = (T1 − c1y)e
−c0y, w0 = e−LWc0y, w1 = −(c1LWy − B1)e

−c0LWy. (49)

We still use scalings (24) for the reaction zone (Region II) though now we put

w = 1 −Wγ −1

This leads to the equations for the reaction zone as

U ′′ − V 2exp

(
− U

1 − γ −1U

)
+ γ −1

[
cU ′ + α̂Wexp

(
− µU

1 − γ −1U

)]
= 0,

1

LA
V ′′ − V 2exp

(
− U

1 − γ −1U

)
+ γ −1cV ′ = 0,

1

LW
W ′′ + γ −1cW ′ − β̂Wexp

(
− µU

1 − γ −1U

)
= 0,

(50)
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subject to the matching conditions, found by expressing the solution in Region I for y small
in terms of ζ = γ y, that

U ∼ (c0ζ − T1)+ γ −1

(
−c

2
0

2
ζ 2 + (c1 + c0T1)ζ + T2

)
+ · · · ,

V ∼ LAc0ζ + γ −1

(
−L

2
Ac

2
0

2
ζ 2 + LAc1ζ

)
+ · · · ,

W ∼ (LWc0ζ − B1)+ γ −1

(
−L

2
Wc

2
0

2
ζ 2 + LW(c1 + c0B1)ζ + B2

)
+ · · · ,

(51)

as ζ → ∞. We look for a solution to Equations (50) by expanding in γ −1. At leading order
we obtain Equations (28a,b), from which it follows (as before), on integrating and applying
matching conditions (51), that

U0 = 1

LA
V0 − T1, U ′2

0 = c2
0 − 2L2

Ae−U0
(
(U0 + T1)

2 + 2(U0 + T1)+ 2
)
. (52)

Since V0 → 0 at the rear of the reaction zone

U0 → −T1 as ζ → −∞, and c2
0 = 4L2

AeT1 . (53)

From Equation (50c)

W ′′
0 − β̂W0e−µU0 = 0, W0 ∼ c0LWζ − B1 as ζ → ∞. (54)

At O(γ −1) we obtain, on eliminating the reaction terms (using (53)), integrating and
applying the matching conditions as ζ → ∞,

U ′
1 + c0U0 −

(
1

LA
V ′

1 + c0V0

)
+ α̂W ′

0

β̂LW
= α̂c0

β̂
. (55)

In this case Region III is redundant as the reaction terms can be neglected in this region (with
µ of O(1) and γ large) with then u a constant ∼ 1 + T1γ

−1 + · · · , v ≡ 1, w ≡ 1. Hence,
U ′

1 → 0, V0 → 0, W0 → 0 as ζ → −∞ so that (54) gives

U0 → α̂

β̂
= −T1 as ζ → −∞. (56)

Then, from (53) and (56) we obtain

c2
0 = 4L2

Ae−α̂/β̂ , c ∼ 2LAe−αγ/2β

γ 3/2
+ · · · for γ 	 1, αγ ∼ β. (57)

The above analysis shows that there is an interplay between α (the heat lost in the en-
dothermic reaction (2)) and β (the rate at which the inhibitor is consumed) for the formation
of combustion waves. It suggests that we require α to be small. With β ∼ α there is extinction
at a finite rate of heat loss, αcrit (expression (47)), and the possible change from fronts (all
the fuel and inhibitor consumed) to pulses (temperature returns to its original value, some
fuel and inhibitor remaining). With β 	 α there is a rapid (exponential) fall off in wave
speed with α (for given values of the other parameters), see expression (57). There is also the
suggestion from this analysis that wave formation will be inhibited if α is sufficiently large
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Figure 3. Wave profiles for γ = 10·0, β = 10−4 (LA = LW = 1) and (a) µ = 0·.1, α = 5 × 10−5, (b)
µ = 0·5, α = 5 × 10−5, (c) µ = 0·5, α = 1·7 × 10−4. — u, – – – v, - - - - w.
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Figure 3. Continued.

(unless we formally put β ≡ 0). We now test these predictions from our high-activation-
energy asymptotics through numerical integrations of the original initial-value problem (6–
10).

4. Numerical simulations

Equations (6–8), subject to initial and boundary conditions (9,10), were solved numerical-
lly using a standard scheme for integrating parabolic systems based on the Crank-Nicolson
method. The sets of nonlinear finite-difference equations that arise in the method are solved in
turn using Newton-Raphson iteration. A space step 1x = 0·1 was used for the results shown,
with the number of grid points varying from 8,000 to 16,000 as required by the nature of the
combustion waves that form. A variable time step 1t was used. This was adjusted to keep
the errors introduced in time differencing within some preset tolerance by covering the step
from t to t +1t in one and then two steps and requiring that the difference between these two
solutions was less than this tolerance (usually set to 5 × 10−4). The more acurate (two-step
solution) was used to start the integration for the next time step. A routine was incorporated
into the numerical integrator to monitor the position of the wave, located at the point where
the fuel concentration achieved half its maximum possible value. The variation of this with t
was calculated to give the wave speed c.

Some initial trial runs were performed with a smaller space step of1x = 0·05. These were
compared with the corresponding runs with 1x = 0.1 and relatively small differences (well
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Figure 4. (a) wave speed c against α, obtained from the numerical integrations of initial-value problem (6–10),
for γ = 10·0, β = 0·1 and µ = 0·5 (LA = LW = 1). (b) wave profiles for γ = 10·0, β = 0·1, µ = 0·5 and
α = 0·0175. — u, – – – v, - - - - w.

within graphical accuracy) were found between the two sets of results. This gave us confidence
that using 1x = 0·1 would give reliable accuracy. Our analysis shows that a reaction region
develops that is relatively thin (with large gradients), at least for the larger values of γ , and the
number of grid points within this region needs to be sufficiently large to maintain accuracy.
We monitored this point and found that taking 1x = 0·1 gave over 1200 grid points within
the reaction region in the extreme cases, often there were many more than this. We thought
that this was satisfactory for the accuracy required. To deal with applying the unburnt gas
temperature T = 0 ahead of the wave, in the numerical scheme we set the reaction terms to
zero if the temperature was below some small positive value, taken as the tolerance for the
convergence of the Newton-Raphson iteration.

We start by considering a case typical of α ∼ β ∼ γ −4, taking γ = 10·0 and β = 10−4.
Plots of the wave speed c against α, calculated from the numerical integrations forµ = 0·1 and
µ = 0·5, are shown in Figure 2. We took LA = LW = 1 as we do in the rest of the numerical
solutions described below. The graph shows that the wave speed decreases with µ (for a given
α) with wave extinction at a finite value of α, αcrit, in both cases. For µ = 0·5 there is a
transition from front to pulse waves before this extinction. (The position of the transition from
fronts to pulses is marked on Figure 2.) This is not the case forµ = 0·1 where only front waves
form. The numerical integrations give αcrit = 6·7×10−5 for µ = 0·1 and αcrit = 1·7×10−4 for
µ = 0·5. Expression (47) suggests corresponding values of αcrit = 9·8×10−5 and 1·19×10−4.
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Figure 4. Continued.

Figure 5. Wave speed c against α, obtained from the numerical integrations of initial-value problem (6–10), for
γ = 5·0, µ = 0·5 and β = 0·05, 0·0016 (LA = LW = 1).
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Figure 6. Wave profiles for γ = 5·0, µ = 0·5 (LA = LW = 1) and (a) α = 3 × 10−4, β = 0·0016, (b)
α = 0·006, β = 0·05, (c) α = 0·016, β = 0·05. — u, – – – v, - - - - w.

Reasons for this difference could lie in that the value of γ needs to be larger for the leading
order terms in our asymptotic analysis to be a more accurate representation. Errors could also
arise from µ not being sufficently small. These differences between theory and numerics can
be seen in the wave speeds. For example, cad , the adiabatic wave speed (α = 0) is, from (46),
cad ∼ 2LAγ −3/2 = 0·063 in the present case, whereas we find cad = 0·047 in the numerical
integrations.

Figure 3 shows wave profiles for this case (γ = 10, β = 10−4) plotted on a long spatial
domain well after initiation. Figures 3a,b illustrate the development of front waves for α = 5×
10−5 and µ = 0·1 (Figure 3a) and µ = 0·5 (Figure 3b). These figures show behaviour in the
reaction zone in line with theory, with the u and v profiles almost identical (expression (30))
and with only a small increase in the concentration ofw (see scaling (24)). The v concentration
rapidly approaches its totaly consumed value of v = 1 at the rear of the reaction zone, though
u and w have not fully recovered to their final values in this plot (Region III of the theory) of
u → 1 − α/β = 0·5, w → 1. This effect is more noticable with µ = 0·5 than for µ = 0·1.
We could expect this from theory, since the final recovery region (Region IIIb) is large, having
an extent of O(γ 5/2). In both cases temperatures higher than the final outcome are achieved
within the reaction zone, again in line with scaling (24) which gives u = 1 + O(γ −1) in the
reaction zone.

Figure 2 shows that only front waves can form when µ = 0·1. However, pulse waves are
possible for µ = 0·5. We illustrate the development of a pulse wave in Figure 3c (for α =
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Figure 6. Continued.

1·7 × 10−4). The speed of this wave is reduced from that seen in Figure 3b (from c = 0·040
to c = 0·011). The behaviour in the reaction zone is similar in both cases with v again rapidly
achieving its final value. Now the final states for u and w (u → 0, w → β/α = 0·588) are a
long way from being reached. We can gain some insight into the reason why this is the case
from Equation (43), which becomes

c0
du

dξ
= (ᾱ − β̄)e− ν

u for u small. (58)

Equation (58) shows that the approach over this region of extentO(γ 5/2) to u = 0 is extremely
slow, with

u ∼ ν

log

[
c0ν|ξ |(log |ξ |)2

(ᾱ − β̄)

] + · · · as ξ → −∞.

The behaviour of w follows from (42) as

w ∼ β̄

ᾱ


1 − ν

log

[
c0ν|ξ |(log |ξ |)2

(ᾱ − β̄)

] + · · ·


 as ξ → −∞.
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Figure 6. Continued.

This very slow decay to final asymptotic conditions could be expected, since in this final
region the reaction has almost switched off, being no more than of O(e−γ ) for γ large, and
the profiles are very flat, so diffusion and thermal conduction also have little effect in reducing
u to zero (and increasing w to its final value).

Our theory predicted different behaviour when β is O(γ −1), much larger than the previous
case. We illustrate this case in Figure 4a with a plot of the wave speed c against α for γ =
10·0 and µ = 0·5. Here there is no extinction at a finite value of α, though the wave speed
becomes very small for the higher values of α (with α still small compared to β). The slope of
the curve is similar to that suggested by expression (57), though, as before, the theoretically
predicted values are somewhat larger than those determined numerically. The main point to
note is that there is a qualitative difference between this case (Figure 4a) and the previous case
(Figure 2). We show wave profiles in Figure 4b (for α = 0·0175). The figure shows that there
is a separation between the three profiles, with the inhibitor being consumed ahead of the fuel
in the preheat zone (Region I), with the temperature then rising in the reaction zone as a result
of fuel consumption. Here the u profile is monotone, u achieves its maximum value after the
reaction (compare with Figure 3). In this case only front waves can form and both v and w
reach their final values rapidly at the end of the reaction zone though u takes longer to settle
to its final value (u → 0·825).

The behaviour identified theoretically for γ large and seen in the numerical simulations
for γ = 10 holds for smaller values of γ . This is shown in Figure 5, where we plot the wave
speed c against α for γ = 5·0 (with β = 0·0016 and β = 0·05). (Note the the different scales
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Figure 7. (a) wave speed c against α, obtained from the numerical integrations of initial-value problem (6–10),
for γ = 1·0, β = 0·005 and µ = 0·5 (LA = LW = 1). Wave profiles for γ = 1·0, β = 0·005, µ = 0·5 and (b)
α = 0·003, (c) α = 0·02. — u, – – – v, - - - - w.

for α used in this plot.) In the former case β ∼ γ −4 and behaviour suggested by expression
(46) is seen (see Figure 2) with extinction at αcrit = 0·00133. In the latter case β ∼ γ −1 and
behaviour identified by expression (57) results (see Figure 4a). Note that for the results shown
in the figure the ratio αγ /β is of O(1).

Typical wave profiles (front waves) for these two cases are shown in Figure 6. Figure 6a
(β = 0·0016, α = 3×10−3) shows profiles similar to those seen in Figure 3a, though now the
final conditions (u → 0·8125, v,w → 1) are achieved more readily after the reaction zone
has passed. There is still an ‘overshoot’ in the temperature within the reaction zone. Note that
the influence of the initiation can be seen in a region near the origin where a temperature excess
still remains. This feature is also seen in Figures 6b,c. For Figures 6b,c we took β = 0·05,
with a small value of α for Figure 6b (α = 0·016). For small α the wave profiles are almost
indentical in the reaction zone, different to the behaviour mentioned previously (Figure 4b).
For higher values of α (Figure 6c) the wave profiles become more separated (as in figure 4b).
An important difference between the the profiles shown in Figures 6a and 6c is that, in the
former case (smaller β), the reaction in the fuel starts first before the reaction in the inhibitor,
nearly all the fuel has been consumed before there is any appreciable loss of inhibitor. This is
not the case for higher β (Figure 6c) where the reaction in the inhibitor starts first.

Extinction at a finite value of the cooling parameter α is not restricted to having a high
activation energy (large γ ). This can be seen in Figure 7a, where we plot wave speeds c
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Figure 7. Continued.

against α for γ = 1·0 (and β = 0·005, µ = 0·5). In this case αcrit = 0·0217, showing, with
the previous results, that the range of α over which wave initiation is possible increases as γ is
decreased. For smaller values of γ we may expect the final state of the system to be achieved
more readily after the wave has passed. This is the case for front waves, as can be seen in
Figure 7b (here α = 0·003). Pulse waves in the temperature take much longer to form even
at this low value of γ , as can be seen in Figure 7c (for α = 0·02). This figure shows that
there is still a drop to be achieved in the u profile before the pulse is fully formed, though the
pulse-like structure of this wave is much clearer than that shown in Figure 3c.

5. Discussion

We have identified two different types of behaviour that can be supported by our combustion
model. Which type occurs depends most strongly on the parameters α and β, the other para-
meters µ and γ are not especially significant in determining the qualitative behaviour. We can
think of α as a heat-loss parameter — it represents the heat lost in the endothermic decay of
the inhibitor relative to that produced by the exothermic combustion of the fuel. The parameter
β represents the rate at which inhibitor is consumed relative to the consumption of fuel. With
β small this is a weak process. Even so, the heat lost through this endothermic reaction has
a strong quenching effect on wave initiation, combustion waves forming only when α < αcrit

with αcrit ∼ β. This effect is analogous to the extinction of wave propagation when heat is
lost through Newtonian coooling [4–6], where usually only weak cooling rates are needed
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Figure 7. Continued.

to induce extinction. The wave speed — cooling parameter curves are similar in both cases
(Figures 2, 5 and 7a). In analogy we can expect a saddle-node bifurcation in our case at αcrit

(see Figure 1) with the lower branch being unstable (and hence unattainable in our numerical
simulations).

For larger values of β and stronger inhibitor decay rates, the effect of the endothermic
cooling is to quickly reduce the wave speed as the cooling parameter α is increased (Fig-
ures 4a and 5). For propagating waves to form in this case requires α � β. There are distinct
differences in the combustion waves that form in the two cases (Figures 3, 4b, 6a,c) reflecting
the significance of inhibitor decay relative to fuel consumption.

Some confirmation of the qualitative different behaviour supported by our model is pro-
vided by studies (both experimental and theoretical) on the inhibitory effects that the addition
of sprays or particles (both reactive or inert) can have on premixed flame propagation [11–18].
These studies have shown that the propagation speed of a premixed flame is decreased by the
addition of dust (or spray) through negative thermal (and sometimes chemical) feedback. The
main parameters on which the flame speed depended were found to be the virtual heat capacity
of the particles and the particle size. The speed was found to decrease either monotonically
(as in our αγ ∼ β ∼ γ −1 case) or to have an S–shaped form (depending on the value of the
particle–size parameter). The upper branch of this latter curve is similar to our α ∼ β ∼ γ −4

case.
A feature of our results is the large difference between the theoretically and numerically

determined values, even at the largest value of γ considered (γ = 10). This appears to
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be a general feature of high-activation-energy asymptotics. The differences between theory
and numerics seen in our model are comparable with those seen when there is heat loss by
Newtonian cooling, where much higher activation energies are needed to get much better
agreement. So it is, perhaps, not surprising that we see such differences in the two sets of
results, though we can still have confidence that the behaviour found in our high-activation
asymptotics is a reliable guide to how the system behaves in general.
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